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Frequent overexpression of epidermal growth factor receptor
(EGFR) in non-small-cell lung cancer (NSCLC) makes EGFR a
new therapeutic target. Two specific EGFR tyrosine kinase
inhibitors, gefitinib (ZD1839, Iressa) and erlotinib (OSI-774,
Tarceva), have been developed and approved by the US Food
and Drug Administration for second-line and third-line
treatment of advanced NSCLC. Clinical trials have shown
considerable variability in the response rate between different
patients with NSCLC, which led to the discovery of somatic
EGFR-activating mutations. This brief review summarises the
discovery and functional consequences of the mutations, their
clinicopathological features and significant implications in the
treatment and prognosis of NSCLC.
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L
ung cancer is one of the most common human
cancers and the leading cause of death due to
cancer worldwide.1 It claims more lives than

colorectal, breast and prostate cancers combined.
Fewer than 15% of patients can be cured and have
a .5 year survival rate, as the disease is often in an
advanced stage at the time of diagnosis and
chemotherapy/radiotherapy cannot cure the
advanced disease.2 Lung cancer is generally classi-
fied into two basic types, small-cell lung cancer
and non-small-cell lung cancer (NSCLC). NSCLC
accounts for approximately 85% of cases and can
be further divided into squamous-cell carcinoma,
adenocarcinoma and large-cell carcinoma.3 In
recent years, adenocarcinoma has replaced squa-
mous-cell carcinoma as the most common histo-
logical subtype of NSCLC in the US and many
other parts of the world.4 5

The pathogenesis of lung cancer is yet to be fully
understood. Multiple environmental factors are
implicated in lung carcinogenesis, such as outdoor
and indoor pollution, diet and bacterial and viral
infections.6 Cigarette smoke has been widely
accepted as the major cause of lung cancer and a
linear dose-response relationship has been estab-
lished between risk of lung cancer and the amount
of cigarettes consumed.7–9 The occurrence of lung
cancer is also closely associated with the accumu-
lation of multiple genetic and/or epigenetic
changes.10–12 Better understanding of molecular
mechanisms underlying the pathogenesis of lung
cancer would provide pivotal guidance for the
treatment and prevention of cancer.

EGFRs AND LUNG CANCER
Human tumours often express high levels of
epidermal growth factor (EGF)-related receptors,

which include EGFR/HER1, c-erbB2/HER2, c-
erbB3/HER3 and c-erbB4/HER4 (table 1).16–20 All
these receptors share a common extracellular
ligand-binding domain, a hydrophobic transmem-
brane domain and a multifunctional intracellular
domain that has an ATP-binding site and tyrosine
kinase activity (HER3, however, does not have
tyrosine kinase activity). Receptor activation is
generally initiated by the binding of EGF-related
ligands and receptor homodimerisation or hetero-
dimerisation, which activate the intrinsic tyrosine
kinase activity of the receptors and lead to
autophosphorylation of the tyrosine residues.
These residues further activate downstream sig-
nalling cascades, such as the Ras-Raf-MAP-kinase,
PI3K-Akt and STAT pathways, which have strong
regulatory effects on cell proliferation, differentia-
tion, survival and migration.21–23

EGFR is generally expressed at a low level in a
wide variety of normal tissues. Excessive expres-
sion or activation of EGFR is able to induce
malignant transformation.24 Overexpression of
EGFR has been observed in 40–80% of
NSCLCs,20 25 and it is often associated with
aggressive clinical behaviours, such as advanced
stage, increased metastatic rate, higher tumour
proliferation rate and poor prognosis.26–29 Other
than overexpression, a mutant form of EGFR
(EGFRvIII) with constitutive tyrosine kinase activ-
ity has been identified in NSCLC30–32 and is
implicated in lung tumorigenesis.33 34

Given that EGFR is often overexpressed in
NSCLC and given its potential role in lung
carcinogenesis, EGFR has been considered a
rational target molecule for the treatment of
NSCLC. Specific EGFR tyrosine kinase inhibitors
(EGFR-TKIs), gefitinib and erlotinib, have been
approved by the US Food and Drug Administration
as monotherapy treatment for advanced or meta-
static NSCLC.35 36 Both agents adversely compete
with ATP for the critical ATP-binding site located
in the intracellular domain and inhibit receptor
phosphorylation.

GEFITINIB AND EGFR MUTATIONS
The effectiveness of gefitinib has been evaluated by
two randomised and double-blinded Phase II
clinical trials in patients with advanced
NSCLC.37 38 The results suggest that gefitinib is a
well-tolerated oral EGFR-TKI. It has meaningful
antitumour activity and brings about considerable

Abbreviations: EGF(R), epidermal growth factor (receptor);
NSCLC, non-small cell lung cancer; PCR, polymerase chain
reaction; SSCP, single-strand conformation polymorphism;
TKI, tyrosine kinase inhibitor
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improvement in cancer-related symptoms in certain subgroups
of patients (approximately 10–19%). Females, non-smokers,
Japanese people and patients with lung adenocarcinoma
generally have a higher response rate than males, smokers,
people of European origin and patients with other histological
types of NSCLC.35 37 38 To determine whether somatic mutations
in the EGFR gene play a causal role in response to TKI
treatment, two research groups have systematically sequenced
all 28 exons of EGFR and identified several important activating
mutations that show striking correlation with gefitinib
response.39 40 This discovery has been claimed as the most
significant molecular event in lung cancer.41 It has greatly
stimulated research in this area worldwide, and a number of
other novel mutations have been identified (table 2).

Genotyping methods
Two important factors affect the detection of somatic EGFR
mutations in clinical cancer samples. The first is the availability
of the tumour genome. There is no doubt that frozen surgical
tumour samples45 and tumour paraffin blocks47 are the best
samples for mutation analysis, as they are directly resected
from corresponding tumours and can provide sufficient tumour
nucleic acids for genotyping. However, a large proportion of
patients with NSCLC are not eligible for surgery on diagnosis.
Therefore, non-surgical specimens, such as diagnostic biopsy
and effusion drainage, are probably as important as surgical
specimens in these patients with advanced cancer. Pleural
effusion56 and needle biopsy/aspiration49 have been successfully
managed for mutation screening. Asano et al57 even showed the
feasibility of detecting EGFR mutations with the use of soluble
DNA extracted from pleural fluid.

The second factor affecting mutation detection is the purity
of the tumour genome. Usually clinical cancer samples contain
a large proportion of normal cells, which make up a strong
background of wild-type alleles and seriously dilute the signal
from biologically important somatic mutations. Therefore, the
sensitivity of genotyping methods is of great importance for the
detection of mutations.

Among a number of reported methods, PCR-based direct
sequencing is the most commonly used.39 40 43 44 47 With the help
of cloning technology, even samples presenting difficulty in
direct sequencing can be sequenced using primers located on
vectors. Moreover, tumour RNA can be used for genotype
determination, as all the reported EGFR-activating mutations
are exonic.42 55 However, RNA is usually more difficult to handle
than genomic DNA, because of its rapid degradation and
limited quantity.

Single-strand conformation polymorphism (SSCP) assay is
another important method used for EGFR mutation screening.
SSCP has been considered to be more sensitive than direct
sequencing in mutation analysis.58 59 The two large studies
performed by Marchetti et al46 and Sonobe et al48 have reported
that SSCP assays not only confirmed all the EGFR mutations
detected by direct sequencing but also identified additional
mutations that were missed in sequencing analysis. Therefore,
SSCP assay could be a reliable method for large-scale diagnostic
screening for EGFR mutations in clinical samples.

For detection of known EGFR mutations, a number of
methods have been developed, including restriction fragment
length polymorphism and length analysis of fluorophore-
labelled PCR products,60 peptide nucleic acid–locked nucleic
acid PCR clamp,61 mutant-allele-specific amplification62 and
mutant-enriched PCR.57 The restriction fragment length poly-
morphism–capillary electrophoresis method can not only detect
the mutations but also estimate gene amplification based on
the relative height of the mutation peak to the germline peak.
The peptide nucleic acid–locked nucleic acid PCR clamp,
mutant-allele-specific amplification and mutant-enriched PCR
have high sensitivity. They are able to distinguish even one
EGFR mutant tumour cell in the presence of up to 1000–2000
normal cells.57 61 62

The pattern and functional consequence of EGFR
mutations
Three common types of EGFR mutation—in-frame deletion,
insertion and missense mutation—have been identified. Most
of the mutations are located in the tyrosine kinase-coding
domain (exons 18–21). Amino acids 746–753 encoded by exon
19 and amino acid 858 encoded by exon 21 are the two
mutation hotspots, comprising .80% of the mutations. All the
identified mutations are of somatic origin, and not present in
the germline genome.

EGFR mutations have been proposed as an early event in lung
carcinogenesis. They are not correlated with the classification of
tumour stage.46 Well or moderately differentiated tumours have
more EGFR mutations than poorly differentiated tumours.48

Some of the mutations can even be detected in respiratory
epithelia with normal histology.63 The oncogenic characteristics
of EGFR mutants have recently been proved by anchorage-
independent growth and focus formation in transfected cells
and tumour formation in immunocompromised mice.64

EGFR mutants (deletion in exon 19 and L858R) are capable
of enhancing EGF-dependent receptor activation (Tyr1068).40

The downstream signalling pathways Akt and STAT are also
selectively activated,65 66 and these have an important anti-
apoptotic function. When mutant EGFR expression is sup-
pressed by specific small interfering RNA or when Akt and
STAT pathways are blocked by specific inhibitors, rapid and
massive apoptosis occurs. A similar event also happens when
EGFR-TKIs are applied to mutant NSCLC cell lines.51 65 66 All
these suggest that excessive EGFR signalling plays a critical role
in tumorigenesis in patients harbouring an EGFR mutation, and
mutant EGFRs drive the growth of cancer cells and maintain
their malignant phenotype by the selective activation of Akt
and STAT signalling pathways.

EGFR gene amplification is present in approximately 30–40%
of patients with NSCLC,67 68 and it is associated with a
susceptibility to gefitinib.68–70 The association between EGFR
mutations (deletion in exon 19 and L858R in exon 21) and an
increased copy number of the EGFR gene has been shown in
both preclinical66 71 and clinical investigations,50 70 71 which
could partially throw light on gefitinib sensitivity in patients
with EGFR gene amplification. Genetic instability has been

Table 1 The family of human epidermal growth factor (EGF)-related receptors

Gene location Molecular weight Protein distribution

c-erb B-1/EGFR 7p12.3–p12.1 170 kDa A large variety of cell type or tissues except haemopoietic cells13

c-erb B-2/HER-2 17q21.1 185 kDa A number of human secretory epithelial tissues14

c-erb B-3/HER-3 12q13 160 kDa Several human tumour cell lines15

c-erb B-4/HER-4 2q33.3–q34 180 kDa Lining epithelia of the gastrointestinal, urinary, reproductive, breast cancer cell lines,
and normal skeletal muscle, heart, pituitary, brain and cerebellum16

Somatic mutations of EGFR and NSCLC 167

www.jmedgenet.com



Table 2 Mutations identified in exons 18–21 of the EGFR gene (RefSeq NM_005228)*

Sequence change Amino acid change Reference

Exon 18
2126ART E709V 42, 43
2126ARC E709A 44, 45
2126ARG E709G 44, 45
2125GRA E709K 45
2155GRA I715S 43
2155 GRT G719C 40, 42–47
2155 GRA G719S 39, 43–45
2156 GRC G719A 42–44, 47, 48
2159 CRT S720F 43, 48

Exon 19
2225TRC V742A 49
Del (2236–2244)+2245GRC+2248GRC E746-R748 del with E749Q, A750P 47
Del (2235–2249)/del (2236–2250) E746-A750 del 39, 40, 42–50
Del (2235–2236)+ E746-A750 del with I, P ins 48
Del (2242–2248)+2241ARC
Del (2237–2251)+2252CRT E746-A750 del with V ins 43
Del (2237–2251) E746-T751 del with A ins 44–46, 48, 50
Del (2235–2236)+ E746-T751 del with I ins 43, 48
Del (2239–2252)/
Del (2235–2252)+
2254TRA+2255CRT
Del (2235–2236)+ E746-T751del with I, P ins 48
Del (2242–2248)+2241ARC
2237–2238 AARTC+ E746-T751 del with V ins 43, 49
Del (2239–2253)
Del (2484–2501) E746-S752 del with D ins 44
Del (2237–2254)+2255CRT E746-S752 del with V ins 45, 48, 50
Del (2239–2247) L747-E749 46
Del (2239–2247)+2248GRC L747-E749 del with P ins 39, 42, 43, 45
Del (2240–2248)+2239TRC L747-T750 del with P ins 43, 48
Del (2238–2252)/ L747-T751 del 43, 44, 48, 49
Del (2239–2253)/
Del (2240–2254)
Del (2240–2251) L747-T751 del with S ins 40, 46, 48
Del (2239–2256) L747-S752 del 44, 48
Del (2239–2256)+2258 CRA L747-S752 del with Q ins 43
Del (2238–2255)+2237ART L747-S752 del, E746V 39
Del (2240–2257) L747-P753 del with S ins 39, 40, 42–46, 48–50
Del (2240–2257) L747S, R748-P753 del 47
Del (2254–2277) S752-I759 del 39, 47
2273ARG E758G 49

Exon 20
2308 ins GCCATA M766-A767 with AI ins 47
2308 ins CCAGCGTGG+ A767-S768 with SVA ins 47
2310CRT silent
2303GRT S768I 43–45, 47
Dup (2549–2557) S768-D770 dup 44
2308–2316 ins GCCAGCGTG ASV770-772 ins 43
2320–2322 ins CAC H774 ins 43
2317–2222 ins AACCCC+ NP773-774 ins, H775Y 43
2223 C.T
2320–2325 ins CCCCAC PH774-775 ins 43
2320–2328 ins AACCCCCAC NPH774-776 ins 43
2326CRT R776C 51
2308 ins (CCAGCGTGG)+ ins779 ASV+P782R 48
2310CRT+ 2315CRG
2311 ins (GCGTGGACA)+ ins780 SVD+P782R 48
2315CRG
2369 CRT T790M 52–55

Exon 21
2743TRG L833V 44
2750ART H835L 44
2758CRG L838V 44
2513TRC L838P 49
2520CRT A840A 49
2527GRA V843I 49
2551GRA V851I 49
2572CRA L858M 46
2573TRG L858R 39, 40, 42–50
2582TRA L861Q 40, 42–45
2593GRA E856L 49
2612CRT A871V 49

*Only mutations reported with both nucleotide and amino acid changes are summarised. The beginning of the coding sequence is defined as +1.
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proposed to be the cause of gene amplification and the
facilitator of the incidence of EGFR mutations.71

FACTORS PREDISPOSING TO EGFR MUTATIONS IN
NSCLC
The distribution of EGFR mutations in NSCLC has been
intensively investigated (table 3). In general, EGFR mutations
are more common in patients of oriental origin, in females and
in patients with a history of never smoking or with
adenocarcinoma.73

Ethnicity
EGFR mutations have significant ethnic variation. The muta-
tion rate is approximately 5–13% among Caucasians,43 46 47 but
30–40% among East Asians (table 3).43 44 55 Although the factors
that determine more EGFR mutations in Asians are still an
enigma, different genetic backgrounds and living environments
could provide informative clues. The international HapMap
project (http://www.hapmap.org) has genotyped .300 single-
nucleotide polymorphisms across the EGFR gene in Caucasian,
Japanese, Chinese Han and Yoruba populations. Considerable
interethnic variations in the prevalence of single-nucleotide
polymorphisms have been observed between Japanese and
Caucasian populations (fig 1). It remains unknown if the
germline variations are correlated with the occurrence of EGFR
somatic mutations. However, the association between germline
and somatic variations in upper gastrointestinal familial
adenomatous polyposis has been reported.74

Smoking status and sex
Cigarette smoke is the most significant risk factor for lung cancer.
N-nitrosamines and polycyclic aromatic hydrocarbons, the two
major classes of tobacco-related carcinogens, can produce as many
as 100 mutations per cell genome by means of formation of DNA
adducts.75 Cigarette smoke, however, is not the mutagen of EGFR,
as EGFR mutations are usually more frequent in patients who
never smoke or have a low exposure to cigarette smoke (table 3).
Risk factors associated with non-smoking lung cancer, such as
pre-existing lung diseases, a family history of cancer, passive
smoking, indoor cooking fumes and occupational exposures76

could affect the occurrence of EGFR mutations. More studies are

required to identify the causal mutagens and elucidate the
potential mutagenic capability.

EGFR mutations are more frequent in female than in male
patients, especially among Asians (table 3). This difference could
be correlated with their distinct life styles and smoking habits.
Generally, women tend to be non-smokers or light smokers, and
they play a heavier role in housework, such as cooking and
cleaning, whereas those men who smoke tend to be heavy
smokers and are more often involved in social activities. If the
occurrence of EGFR mutations is associated with potential indoor
mutagens, there is no doubt that women would have a higher
mutation rate than men. On the other hand, female endocrine
factors could also play a role in EGFR mutations.

Histology of NSCLC
EGFR mutations are more frequent in lung adenocarcinoma
than in other histological types of NSCLC (table 3). As the
predominant subtype of NSCLC, adenocarcinoma usually
originates from a peripheral airway compartment, either
surface epithelium or bronchial mucosal glands.77 It is likely
that the specific cellular milieu in these cell types is more
susceptible to the influence of mutagens that induce EGFR
mutations compared with other cell types.

CLINICAL SIGNIFICANCE OF EGFR MUTATIONS
EGFR mutations have been considered the best predictive
marker for response to treatment with EGFR-TKIs in NSCLC. A
number of retrospective studies have indicated that patients
with the mutations have higher objective response rates to
gefitinib than patients with the wild type (table 4). The first
prospective clinical trial has recently been conducted among 75
patients with chemotherapy-naive advanced NSCLC in Japan.
Among 25 patients with EGFR mutations, 16 received gefitinib
monotherapy and nine received standard chemotherapy. In
agreement with the retrospective studies, the group receiving
gefitinib had a 75% response rate to gefitinib.78 Another recent
prospective Phase II trial of gefitinib has shown similar
results.79

Sensitivity to gefitinib or erlotinib is also associated with the
type of mutation and the existence of additional mutations.

A Caucasian

B Japanese

Figure 1 Genotype distribution of germline
EGFR polymorphisms in Caucasian and
Japanese populations. The genotype
datasets are downloaded from the HapMap
project and displayed in Visual Genotype
(VG) format (http://
pga.gs.washington.edu). The columns are
the polymorphic sites. The rows are the
arrays of samples. Blue represents a
homozygote for the common allele, red
represents a heterozygote (both common
and rare allele) and yellow represents a
homozygote for the rare allele.
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Patients with deletion mutation in exon 19 have higher
response rates than those with L858R in exon 21.42 80 An
additional mutation in exon 22 (K884E) is able to make tumour
cells sensitive to gefitinib but resistant to erlotinib.81 Further
laboratory and clinical studies are required to elucidate the
underlying mechanisms.

Furthermore, EGFR mutations have been considered a
favourable prognostic indicator in NSCLC. Patients with the
mutations have improved time-to-progression and longer
overall survival than those with the wild type
(table 4).42 49 50 67 70 However, two Japanese studies have found
conflicting results, namely that there is no significant difference
in survival between the groups with and without the muta-
tions.43 62 This discrepancy could reflect the fact that other
prognostic factors besides EGFR mutations also play an
important role in survival among patients with NSCLC.

SECONDARY EGFR MUTATIONS AND ACQUIRED
RESISTANCE TO GEFITINIB
Gefitinib has brought significant treatment response among
patients with NSCLC with EGFR mutations. However, the mean
duration of response is generally 6–8 months.37 38 Most of these
patients eventually relapse and are resistant to further
treatment with EGFR-TKIs. The acquired resistance is closely
associated with the development of a secondary mutation in
exon 20, that is, a substitution of methionine for threonine at
amino acid position 790 (T790M).52 53 Pao et al52 have reported
that three of six patients with acquired resistance to TKIs
harbour the T790M mutation in the progressing tumours.
T790M is believed to abrogate the binding of TKIs to the ATP-
kinase-binding pocket and lead to the continued activation of
ErbB-3/PI3K/Akt signalling.53 82 The scenario is analogous to the
secondary mutations in BCR-ABL and KIT that confer acquired

resistance to imatinib (Gleevec) in chronic myeloid leukaemia
and gastrointestinal stromal tumour.83 84 T790M has been
considered to be present only in relapsed tumours and its
appearance to be secondary to treatment of TKIs. Nevertheless,
rare T790M mutation has been detected in untreated tumour55

and even in germline DNA, and it is associated with family
aggregation of NSCLC.54 Therefore, T790M could play a role in
lung tumorigenesis.

ASSOCIATION OF EGFR MUTATIONS WITH K-ras
AND P53 GENE MUTATIONS
K-ras is a key molecule in the signalling pathways, which
regulate cellular proliferation and transformation. The K-ras
mutation is one of the major genetic changes detected in lung
cancer. The mutations are more common in adenocarcinomas,
are closely correlated with cigarette smoke and are predomi-
nantly the guanine-to-thymine transversion at codon 12.85 86

Cigarette smoke has been proposed as the causal mutagen. P53
is another well-characterised gene in lung cancer. Most of the
mutations are located in evolutionally conserved regions, and
the mutation spectra are different between smokers and non-
smokers. The relationship between the type of p53 mutations
and the histology of lung cancer is still unclear.87 88

The correlation between EGFR mutations and K-ras muta-
tions has been intensively investigated. Generally, EGFR
mutations are present only in lung adenocarcinomas which
do not harbour K-ras mutations.43 46–48 55 62 This observation
might imply that there are different subsets of lung adeno-
carcinomas, which possess different mutation spectra and
causal mutagens. By contrast, mutations in the EGFR gene and
the p53 gene happen independently,48 55 but the status of gene–
gene interaction and its influence on lung carcinogenesis and
treatment response remains unknown.

Table 3 Overview of 10 large studies on EGFR mutations in non-small-cell lung cancer (NSCLC)

Ethnicity Subjects (n)
Mutation rate
(%)

Deletions in exon
19 (%) L858R (%)

Mutation rate (%)

Non-smokers vs
smokers Female vs male

Adenocarcinoma vs
other NSCLC

Marchetti46 White 860 5 46 46 20 vs 2 19 vs 2 10 vs 0
Eberhard47 White 228 13 62 24 25 vs 12 13 vs 13 15 vs 11
Cappuzzuo67 White 89 17 53 47 46 vs 12 26 vs 12 20 vs 10
Shigematsu43 White 158 8 46 39 29 vs 3 20 vs 1 16 vs 1

East Asian 361 30 56 vs 14 55 vs 19 48 vs 3
Kosaka55 Japanese 277 40 47 44 66 vs 22 59 vs 26 49 vs 2
Sonobe48 Japanese 154 39 57 37 79 vs 16 70 vs 19 55 vs 0
Tokumo72 Japanese 120 32 50 47 69 vs 15 57 vs 20 45 vs 3
Huang44 Taiwanese 101 39 33 51 47 vs 18 44 vs 32 55 vs 3
Sugio62 Japanese 469 29 45 55 54 vs 19 46 vs 21 42 vs 1
Yokoyama45 Japanese 349 29 40 39 54 vs 14 54 vs 15 42 vs 1

Table 4 EGFR mutations, clinical tyrosine kinase inhibitor response and survival

Mutation/EGFR-TKI
responders (%)

ORR* (mutations vs
wild type)

TTP* (months;
mutations vs wild type)

Median survival (months;
mutation vs wild type)

Lynch40 8/9 (89) — — —
Paez39 5/5 (100) — — —
Huang44 7/9 (78) — — —
Cappuzzo67 8/12 (67) 53% vs 5% 9.9 vs 2.6 (p = 0.02) 20.8 vs 8.4 (p = 0.09)
Eberhard47 8/26 (31) 53% vs 18% 8 vs 5 (p,0.001) Not reached vs 10 (p,0.001)
Mitsudomi42 24/26 (92) 83% vs 10% — Significantly longer (p = 0.005)
Taron50 16/22 (73) 94% vs 13% — Not reached vs 9.9 (p,0.001)
Shih49 20/23 (87) 69% vs 9% 9 vs. 2.2 (p = 0.001) 13.9 vs 4.8 (p = 0.013)
Takano70 32/35 (91) 82% vs 11% 12.6 vs 1.7 (p,0.001) 20.4 vs 6.9 (p,0.001)

*ORR, objective response rate (complete response or partial response); TTP, time to progression.
—, data are not available.
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SUMMARY AND FUTURE RESEARCH DIRECTIONS
The discovery of somatic EGFR mutations has been claimed as a
big victory of molecular medicine.41 It has had a considerable
effect on the treatment of NSCLC. The strong associations
between the mutations and gefitinib responsiveness and
favourable prognosis provide forceful support for an individual
genotype-based therapeutic strategy. By now, a number of
genotyping methods have been developed. However, most of
them are technically complicated and need substantial research
resources and expertise, which make routine clinical screening
difficult and impractical. Developing a set of simple and
accurate genotyping methods would be of great importance
for translating this bench discovery into clinical application. On
the other hand, further basic studies are required to investigate
whether other functional consequences are present down-
stream of EGFR signalling pathways and whether additional
predictive biomarkers are available. For patients with acquired
resistance to EGFR-TKIs, monitoring the EGFR mutation status
in recurrent tumours is crucial for revealing the molecular
mechanisms of drug resistance and developing new generations
of TKIs. Finally, more large prospective studies to evaluate the
therapeutic and prognostic value of EGFR mutations are
required in patients with EGFR-mutation-enriched NSCLC.
Prospective study is usually superior to retrospective study in bias
and confounder control and therefore can provide more accurate
assessment of the significance of EGFR mutations in the clinical
treatment of NSCLC and of the possibility that EGFR-TKIs might
replace conventional chemotherapy as the preferred antitumour
drugs for the subset of patients with NSCLC.
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